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hold (in &(&)). Since the function v(z,t) has for any t for almost all x a finite 
derivative v,, then frcin the equation a = pu, -p it follows that the finite derivate ~1, 
exists almost everywhere. The theorem is proved. 
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LOCALIZATION OF GAS-DYNAMIC PROCESSES AND STRUCTURE WHEN THE 
MATERIAL IS COMPRESSED ADIABATICALLY, IN THE PEAKING MODE* 

A.P. MIKBAILOV and V.V. STEPANOVA 

Adiabatic compression of gas by a piston, the pressure on which increases 
in the peaking mode, is studied. The entropy is distributed over the mass. 
A class of selfsimilar solutions (the LS mode) is constructed and its 
properties are studied. It is shown that the effective dimensions of the 
compression wave decrease with time and all gas-dynamic perturbations are 
localized within a finite mass of the gas. The solutions obtained are 
characterized by the presence of a structure (inhomogeneities) in the 
density and temperature. The compression occurs without the formation of 

shock waves. 
The peaking mode, i.e. the precesses in which any quantities may become infinite in a 

finite period of time, have a number of unusual properties_ Thus the development of the 
peaking modes in continua is accompanied by localization ("inertia") of the diffusion processes 
and the formation of non-stationary dissipative structures /l-3/. 

Another example is offered by an isentropic (optimal) compression of a finite mass ofgas 
to superhigh densities /2,4-7/**. Such a process takes place when the pressure acting on the 
compressing piston increases as follows (thesmode): 

P (0, t) = PI (tf - tp, n = -2~ (N + f)/(z i (N + S)(Y - 1)); 

to d : d 0 

where N=O, 1, 2 is a geometrical index, y is the adiabatic index and tf denotes the instant 
of peaking. 

The problem of the adiabatic compression of a cold gas initially at rest, by a piston 
acted upon by a pressure which varies with time according to a more general law, with peaking 
at any n<O, is considered below for the case when N=O. 

Another generalization consists of the fact that the entropy of the gas depends on the 

Lagrangian mass coordinate Z>,O is such a manner, that P (z. t) = n,.d’pV for all t0 < t< tf. 
Such a distribution of entropy in the medium arises e.g. behind the shock wave front moving 

through the gas, with velocity varying with time according to a power law. 
Selfmodelling solutions are constructed for a>-Zy/(y+l) (the .LS mode) corresponding to 

** See also: Kazhdan Ya.M. On the problem of adiabatic compression of gas by a spherical 
piston. Preprint In-ta prikl. matem. Akad. Nauk SSSR, MOSCOW, No.89, 1976. 
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a pressure growth "slower" than that in the S mode in = -2p/(yi i)). Numerical computations 
using the *?FI_LXP /a/ program were used to demonstrate the stability af the solutions obtained. 

1, Formulation of the selfsimilar problem, Consider one-dimensional (plane) 
non-steady adiabatic gas flows described by the following set of equations: 

a i ( ) 
av au ap 

x T =z, r=-a+, P= aOxapY, to<t<tf (f-f) 

where x2 0 is the Lagrangian mass coordinate and u(s, t)* p (x,t),P (x, t) are the velocity, 
density and pxessure of the gas respectively. 

The gas is set in motion by means of a piston situated at the point x -0. and the 

pressure on it varies within the peaking mode 

P (0, t) = P, (t, - t)“, n = collst < 0, to Q t < t/ U-2) 

The passage to a problem with velocity boundary conditions is discussed at the end of 
Sect. 4. 

The gas is at rest at the initial if&ant 

u h* 4%) ==O,O<X<Q (1.3) 

Dimensional analysis implies that in order to fOrmUlate the Sslfsimil~ problem We must 

put t, = - m and eliminate the pressure (or density) parameter from the initial data 

Pfx, t)=a&pq(x, Q-+0, t-t -00, O\<t<= G-4) 

The selfsimilar formulation corresponds tothesituation where the piston is present at 
the initial instant at the point at infinity (r(O,t) is the radius of the piston) 

r(0, t)-=+-ce,t+-oo 

In accordance with dimensional analysis the solution of problem (l.l)-(1.4) can be 
written in the form (tf -0 without Loss of generality) 

p (xl 1) = PO (-t)"s (k), P (s, f) - PO t- tYg f&f. u (x9 8 = 0-S) 
ViJ (- 8))' v (E) 

k = ((2 -6)s -2~)/(2y~~), I = ((Y - 1;+ 6) n + 6,42y + 6) 
u, = (P~l+b~o)W%Wi), p0 3 (p~bao~)ll(W+O 

and the selfsimilar coordinate is 

For the sel.fsi.milar functions the problem becomes 

mEg' -I- g+v = kg, yebgy'g' + mfv' =p Iv -&ffP1, x = Eb@ 

JI (0) = 1, n (b) = v (Et) = 0 (0 < E, G a) 
0.7) 

Here $ is the coordinate of the wave front, i,e. of the point separating the region 
in motion from the unperturbed gas, 

We will seek a continuous, non-negative solution of (1,7), 
The functions R (&v(E) are bounded and non-negative for all o<E<oo, and tbe function 

&z (E) is either zero (6< 0) or infinite (&>O) at the point F, = 0. 
We note that the problem formulated above can also be considered in the case when 

--9 provided that P (2, to), u(x, t,)are given in the form (1.5) where the functions n (g):\& 
satisfy problem (1.7). 

2, The conditioris for a solution to exist. Analysis of problem (1.7) yields 
the following asymptotic forms: near the piston (E-0) we have 

g(E) = E?-bJY (1 + Cc& + . * .) (2.1) 

v(E)= v(O) f +'v+Wv .+ ~ . . 

x (5) = 1 + C& + C,&{~+~)k + * . * 

v (0) = C,il > 0, cg, = c,/y 

and near the front (&XC. the assumption that &r<oo leads to a contradiction] 
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n (&) = &n/m (C, + C,a&-llm + . . .) 

C, = 2mC*J(IC,,P), c, = nC,,%z 

The constants aCccQlpanying the first tSmS of the expansion (2.2) are positive, and those 
of the second terms are negative. Their values depend on n, 6.y and are found from the 
numerical solution of problem (1.7). 

The necessary conditions for solutions to exist follow from the boundary conditions of 
(1.7) and the asymptotic forms (2.1), (2.2) 

6>-~y,k<O,1<O,m>O (2.3) 

The solutions of the problem are segregated according to the sign of the parameter m, 
The case of m =-o (separation of variables) corresponds to the S mode, and the case of 
m>O to the LS mode. When m<O (the HS mode in accordance with the terminology of 
/l-3/). There is no solution. 

Numerical experiment shows that the class of boundary HS modes is characterized by the 
fact that their interaction with the medium generates a compression wave (which must contain 
a discontinuity). As t-et,, the wave embraces all the material and there is no localization. 

3. Construction of the solution. By making the change of variables 

Q = In E, n (4) = @PFcQl(Y+')P (?Q (3.1) 
g (Q = &OIWl)G (q), v (E) = &W-l+W(9+l)V (q) 

we reduce the system for the selfsimilar functions g,v,n to the form, autonomous in E 

dV/dq = AvIA, dGJdq = AJA (3.2) 

Av= ~yVG9+'-+V-n@ 

AC=- 
2Yi- 6 G9'Z --$$G-ZV6, A=m2_yGV+’ 

Problem (1.7) reduces to an ordinary, first-order differential equation 

dVidG = AviAs (3.3) 

withboundary conditions V(G=O)=O; V(G=oo)=oo, 6>1.--y; V(G=a)==O, -~<&<a --y, 
obtained using (2.2), (2.3). 

Every value of the variable q (or t) must be in 1:l correspondence with a unique value 
of the solution (the functions V and G); therefore the functions q(V) and q(G) must be 
monotonic in the solution 

dq/dG # 0, dqldV # 0, G 2 0, V > 0 

The required solution connecting the points G=O and G- 00 in the plane VG (see 
(3.3)), must pass through the line G* = (~~fy)ll(~+l) on which the product of dqfdG and dnidV 
changes sign, apart from the points where Av = 0, AC = 0. Consequently, it is necessary, 
for uniqueness, that the solution should pass through the singularity F1 of (3.31, defined 
by the conditions 

As=Av=A=O (3.4) 

FI = {G* = (me/y)l’{y+l), V, = mrsl(yff;,) f 

The points FI is a saddle point with critical directions 

u 1,~ = WdG),, = [m (n (Y + 1) f 4Y + W(2Y + 6) -t- 
W (n (v + 1) + 4y j- 6)$/(2y + Qa -4m*n (n (y -1 -J- 
6) + 2y -j- 6 - 2)/yl’~~lf(2ZG,2) 

(3.5) 

The points lying on the wave front and the piston, represent the singularities of (3,31. 
The wave front appears at the point A (G = 0, V =O), nodal for any value of the parameters 

% 6, Y>f. The integral curves near the front have the form 

V = C, (n, 6, y) G (Y-‘)/* f C, (n, 6, y) Gv + . . . 

When -Y<S<l-Yt the point i3(V = 0,G = W) corresponds to the piston. At the given 

values of 6 the point 3 is a node, The solution enters the singulaxity along the OG axis 

5' = C, (q&s, y) GX + n/(y + 6)G-' + . . ., A = y (y - 1 + S)/(& + 6) 

When &>I --y, the piston is at the point C(V = x,G = ~)representing a complex 
singularity. Near the point the integral curves have the form 
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(3.6) V = l/ZG+’ + 0 (GIL), p = y (6 - 34’ - 1 + 6); 
v = c (n,6, y) G” 

where C(n,&,y) are found from the numerical solution of the problem. The second curve of 

(3.6) satisfies the boundary condition. 
We construct the field of integral curves by inspecting the regions of monotony and 

behaviour of the solution near the singularities. The solution of the problem must connect 
the points corresponding to the front and the piston, and pass through the point F, (see 

(3.4)). Then the conditions are satisfied by one of the separatxices of the point F,, and 
the separatrix is the required solution. 

Figure 1 shows the field of integral curves for the case -Y < 6 < 1 -y* -2Yi(Y$_ 1) < 
n < 26/(2 -6). The solid line is the solution, the dashed lines represent the isoclines of 
the zero (V,,) and infinity (V,), and the dot-dash line is the line G, = (,~/y)'/CW). 

Construction of the regions of monotony of the functions g, v,, x, T in the VG plane, leads 
to the following conclusions. 

The pressure and ensity are monotonically decreasing functions of the selfsimilar variable 
E and hence of the mass coordinate I. 

function of CC when 
The density (temperature) is a non-monotonic 

6 <O (6> 0). The density and temperature have at most a single maximum, 
which follows from the third equation of (1.1). 

We thus have 

Theorem. A solution of problem (1,7) exists and is unique when s> -y and -2Y/(Y + 
1) < s < -Si(Y - 1 + 6) (6 > 1 -Y), -2YQY -t- I) < n < 26/(2 -8) (-y<S < 1 -y). The boundary 
conditions in (1.7) hold when &,= m. The functions x(g), v(j) are monotonic function 
g(~}(~(~)} is monotonic when S>O(& <0) and has a unique maximum when 6 < 0 (6 > 0). When 
n<-2y/(y+l) and n>-S/(y-I++)@>1 -y), n>26/(2 -6)f-y<6<1 -y), there is 
no solution. 

Notes. lo. Depending on the magnitude of 6, a solution does not exist for all values 
of n corresponding to the LS mode. 

20 . Thepistonradius ~(0, t)varies from --a0 (atthe"initia1" instant;= -03)) to zero (at 
the instant of focusing)_ 

Figure 2 shows graphs of the functions g(l), s{(5) for R = -1.22, 6 =--1.2, y = 5i, 
obtained by a numerical solution of the problem (1.7), when t, = -0.40 (the light circles), 
1? = -1.02. IV-? (the dark circles) and & = -9.05.10-4 (the crosses). 

4. Physical properties of the solution. Contraction of the effective dimensions. 
The effective dimensions of the wave (the half-width and other points with a fixed selfsimilar 
coordinate, e.g. the position of the maxima), contract with time, 
given by 

approaching the piston as 

set - Eec 1-t)" - 0, t -, -0 (P k?f (t), 8) = 'I,P (0, t)) (4.1) 

The compression wave front is situated at the point at infinity, but this does not 
contradict the finite velocity of perturbations, since infinite time elapses between the 
start of the process to = -a and the instant t>t,, otherwise the perturbed region would 
contract with time. 

The energy imparted to the gas by the piston enters a continuously contracting region. 
Near the initial instant of time, in the neighbourhood of the piston ffrontjwe have 

finite (infinite) energy when n> -2(y + B)l(By --1 f6) and infinite (finite) 
-2yi(y + 1) < n < -2 (y i_ li)/(3y - 1 f 8). 

energy when 

Fig.2 

On approaching the instant of focusing 
near the piston. When 

, theenergy enters the contracting gaseous region 
n > -2 (p + 6)/(3p - 1 + 6), the energy is finite, and it becomes 
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infinite when -2Y4Y + 1) < n < -2 (Y -t W(3y - 1 + 6) . This follows from relations (2,l' 
(2.2) and the energy equation 

-g- (WY -I- 1) P 9 p/2) = - -g (PV) 

The wave contains an "acoustic" point at which the Lagrangian speed of sound is equal to 
the rate of propeqation of the fixed, selfsimilar state (in the VG plane we have thecorrespond- 
ing singularity PI on the "acoustic" line G* = (~s/~}l'(~+i)). The flow is "supersonic" between 
the *acoustic" point and the front, and "subsonic" between the front and the singularity. 
Unlike the regions without peaking, the acoustic singularity is traversed in a continuous 
manner, 

Limiting curves and localization. Although the pressure and velocity of the piston both 
increase in the peaking mcde, localization of gas-dynamic processes nevertheless occurs, 

Indeed, for every fixed O< x* < 00 the quantity $* - s*/(.r, (-t)")-+ x as 2- -0. 
Then, using relation (2.2) we obtain the following asymptotic expressions as t---L -0 : 

P (z, t) = cp@n + Cp&““)‘m (4) + , . . , cp, < 0 (4.2) 
u (.z, t) = C,ld/m + Cu.@-*f/m (--1) + . . ., C, < 0 
R (z, t) = c&+*(l’lf~= -+ C&&f* (4) + . . ., CR4 < 0 

ffere Ii&t} is the distance between the piston and the point with mass coordinate z. 
System (1.1) end the monotonic form of the function s,v imply that for fixed z* all 

quantities p,U, P, T are monotonic with respect to time, 
Thus in the Ls mode every function p, U,P, T has its limit curve, in other words every 

function has a constant upper limit. As t--O, the solution approaches the limit curve 
from below as given by (4.21, In the LS mode we have localization of the gas-dynamic processes, 
and any fixed physical state does not penetrate past a certain finite mass of gas. 

Gas-dynamic structures.Thedistributionofentropyoverthemass ofmaterialstipulatesthepres- 
ence of localized-maximaofthedensityandtemperature(gas-dynamic structures)inthe ccd?pressionwave. 

Themaximaofthe structuresarecompressedtothepistonwithtimeasgivenbp a law similar to 
(4.1). Density structuresexistwhen S<O, andtemperature structures when 6 >O. When 6-O 
allthe functionsaremonotonicandthere are not structures. 

The degree of compression (heatingf of the portion of the medium is determined by its 
entropy, and the pressure within it. Therefore, as the solutions constructed show, high 
densities (temperatures) can be reached in regions with lower pressure when the pressure 
profile in the empression wave is monotonic. The internal cause of the structure is the lOCal- 
isation ("time lag") of the gas-dynamic processes, whichoccurswhenthepeakingmodes developin 

the medium /S, lo/*, and this conbines t&em with the non-stationary dissipative Structures /3/. 
Example of the numerical solution. Numerical computations 

P for system (1.1) (Fig. 3) illustrate the stability of the solutions 
constructed. The profiles of the quantities near the selfsimilar 

ua solution of the problem with a=: -t.22. :'= 5/3,6 = --1.2 (see Fig, 2) 
at the instant of time 1, = -l(a,= P,=l) are used as the initial 
data. 

Figure 3 shows the distribution of gas density over the mass 
at various instants of time t,==---1, t, = -0.40, t2 3 --9.02.10-8, t, = 
--1.46.10_5 , with the dashed line showing the position tr = -9.05.10~, 
of the maxima. Figure 2 shows the profiles of the selfsimilar 
function R (of pressure) obtained when processing the numerical 
solution of the problem (i.ll-(1.4) in accordance with relations 
(l-5), at various instants of time. The results obtained show 
that the selfsimilar pressure profile is reproduced when the pres- 
sure at the piston is increased by a factor of II)'. 

The problem with a velocity at the piston. If the variation 

Fig.3 in velocity is specifiedatthe pistoninthe mode with peaking 

u = u, (-t)"v, no < 0, b, > 0 

* see also: Demidov M.A. and Mikhailov A.P: Localization and structures during the adiabatic 
compression of a finite mass of gas in the peaking mode, Preprint In-taprikl. matem. Akad. 
Nauk SSSR, No. 8, 1983. 
Mikhailov A.P. and Stepanova V.V, Localization and structures during the selfsimilar 
compression of an adiabatic gas in the peaking mode, Preprint In-ta prikl. matem. Akad. 
Nauk SSSR, No. 118, 1982_ 



the problem is equivalent to that discussed above. The transition is effected 

recomputation using the formulas 

m_ (vi- i)n,,+B+i 
- y--l+6 ’ n= 

(%+-~)nD--, k -_ 
(Z-&)?I*-& 

y--1+6 y--l+63 
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by simple 

The solution of the initial problem (with Completely analogous properties) Will exist 

for the following corresponding values of the parameters: k&1(2 -6) < % < (1 - YYU + Y)* --? < 

S<l -_y; (1 -YY(v + 1) < %I < 0, 6 > 1 -Y. 
"Inversion" of the solutions with time. Let the piston move out of the gas and PfO, t) = 

P, (-a"* and let the time vary within the range from t = to to t = --m, this being 

equivalent to the relation P (0, t) = P,F, 0 g t, < 1y). 
If we take the solution of (1.7) at t = to as the initial data, with the sign of the 

velocity changed, then the spatial profiles of the quantities in both problems will coincide. 
The solution represents a rarefaction wave with the half-width increasing according to the 
selfsimilar law. If to = 0, then the limit curves (4.2) become the initial data. 

Inversion of the solutions inthe case of the S mode was discussed in /ll/. 
The solutions obtained are characterized by the lack of discontinuities, contraction of 

effective dimensions of the compression wave and localization of the gas-dynamic perturbations 
consisting of the fact that a state with any quantity (pressure, velocity, density) fired 
does penetrate outside a certain, finite mass of gas, even when the pressure at the piston 
increases without limit as 1 + t,. When s>O, any quantity is bounded from above by 
the corresponding limit curve. 

The solutions containthe gas-dynamic structures (localized maxima? of the density (&<O) 
of temperature (S> 0), and the maxima are attracted towards the piston as t + tf . When 
s=o we have no isentropic case /9/ of the structure. The pressure and velocity are monotonic 
for any values of 6. 

When n< -2yi(y $- i), the "faster" HS mode), the problem in question has no selfsimilar 
solution. The localization and structure were studied in the case of the S mode in /lo/. 

The properties of the solution shown here are essentially different form those in modes 
without peaking 1'12-151 and indicate the possibility of realizing various, physically 
different methods of compressing the material and controlling the process. 

The results of the present paper and of /9-lo,'* enable us to conclude that, irrespective 
of the different nature of the diffusion and the gas-dynamic processes, a general law exists 
governing peaking modes in continua. 
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ON THE OPTIMAL CONTROL OF VISCOUS INCOI'APRESSIBLE FLUID FLOW* 

M.A. 8RUTyAN and P.L. KRAPIVSKII 

The framework of the Navier-Stokes (N-S) equations is used to study flow 
past an arbitrary body on whose surface the tangential or normal velocity 
is under control. The necessary conditions are obtained for the minimum 
rate of energy dissipation. Exact analytical solutions of the corresponding 
problems are found for the case of flow past an ellipsoid in the Stokes 
approximation. 

1, Let a body S by streamlined by a stationary flow of a viscous incompressible fluid, 
We shall consider the following variational problem: to find a suction (injection) velocity 
distribution over the body surface, for which the rate of energy dissipation D is minimal. 
We shall assume here that the total flow of fluid across the surface of S is zero, 

Using dimensionless variables we writetheequations of motion for the fluid, the 
boundary ccnditions and the minimizing functional in the form 

AV-Vp--R(V.V)V=O, V-V=O, Vjs=Ws, Vlm=U (1.1) 

(W 

where Q is the outside of the body S,n = (%,?$,n,) is the unit vector of the external normal, 
U is the stream velocity at infinity and R is the Reynolds number. The N-S equations are 
made dimensionless so as to ensure their simplest form in the limiting case of the Stokes 
flow as R-0. 

2. To obtain the necessary condition for the minimum of the functional (1.21, we shall 
write the rate of suction (injection) W, the rate of flow V and the pressure p in the form 

W = W, f SW,, v = v, + EYr + a (e") (2.1) 

P-=Po+ep,+O(e*),O<rs~~ 

The functions W#, V, and p. satisfy the boundary condition (l.lt, while W,, V, and 

Pl satisfy the boundary value problem 

AV1-Vpr- R[(V,.V)V1+(V~.V)V~~=0, v.v1=0 (2.2) 

v, 1s = win, v, I- = 8 

Varying f1.2) and using the boundary conditions and Gauss's theorem, we obtain 

6n=-2sSVI-AVo2R--4eS~W,dS 
P s 

(2.3) 

*Prikl.Matem.Nekhan.,48,6,929-934,1984 


